Predicting arsenic and heavy metals contamination in groundwater resources of Ghahavand plain based on an artificial neural network optimized by imperialist competitive algorithm

Authors

  • Meysam Alizamir Young Researchers & Elite Club, Hamedan Branch, Islamic Azad University, Hamedan, Iran
  • Soheil Sobhanardakani Department of the Environment, School of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
Abstract:

Background: The effects of trace elements on human health and the environment gives importance to the analysis of heavy metals contamination in environmental samples and, more particularly, human food sources. Therefore, the current study aimed to predict arsenic and heavy metals (Cu, Pb, and Zn) contamination in the groundwater resources of Ghahavand Plain based on an artificial neural network(ANN) optimized by imperialist competitive algorithm (ICA). Methods: This study presents a new method for predicting heavy metal concentrations in the groundwater resources of Ghahavand plain based on ANN and ICA. The developed approaches were trained using 75% of the data to obtain the optimum coefficients and then tested using 25% of the data. Two statistical indicators, the coefficient of determination (R2) and the root-mean-square error (RMSE), were employed to evaluate model performance. A comparison of the performances of the ICA-ANN and ANN models revealed the superiority of the new model. Results of this study demonstrate that heavy metal concentrations can be reliably predicted by applying the new approach. Results: Results from different statistical indicators during the training and validation periods indicate that the best performance can be obtained with the ANN-ICA model. Conclusion: This method can be employed effectively to predict heavy metal concentrations in the groundwater resources of Ghahavand plain.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Forecasting of heavy metals concentration in groundwater resources of Asadabad plain using artificial neural network approach

Nowadays 90% of the required water of Iran is secured with groundwater resources and forecasting of pollutants content in these resources is vital. Therefore, this research aimed to develop and employ the feedforward artificial neural network (ANN) to forecast the arsenic (As), lead (Pb), and zinc (Zn) concentration in groundwater resources of Asadabad plain. In this research, the ANN models we...

full text

Identifying Flow Units Using an Artificial Neural Network Approach Optimized by the Imperialist Competitive Algorithm

The spatial distribution of petrophysical properties within the reservoirs is one of the most important factors in reservoir characterization. Flow units are the continuous body over a specific reservoir volume within which the geological and petrophysical properties are the same. Accordingly, an accurate prediction of flow units is a major task to achieve a reliable petrophysical description o...

full text

identifying flow units using an artificial neural network approach optimized by the imperialist competitive algorithm

the spatial distribution of petrophysical properties within the reservoirs is one of the most importantfactors in reservoir characterization. flow units are the continuous body over a specific reservoirvolume within which the geological and petrophysical properties are the same. accordingly, anaccurate prediction of flow units is a major task to achieve a reliable petrophysical description of a...

full text

Groundwater Contamination by Heavy Metals in Water Resources of Shiraz Area

Lack of sewage collection systems, percolation of surface waters, and seepage of wells have raised the groundwater table in Shiraz area in the south of Iran. The growing population generates environmental pollution resulting in the degradation of the quality of surface and groundwaters used for agriculture. Inorganic and organic pollutants have been traced in Shiraz water resources. Heavy metal...

full text

prediction of heavy metals contamination in the groundwater of arak region using artificial neural network and multiple linear regression

prediction of the heavy metals in the groundwater is important in developing any appropriate remediation strategy. this paper attempts to predict heavy metals (pb, zn and cu) in the groundwater from arak city, using artificial neural network (ann) algorithm by taking major elements (hco3, so4) in the groundwater from arak city. for this purpose, contamination sources in the groundwater were rec...

full text

An Imperialist Competitive Algorithm Artificial Neural Network Method to Predict Oil Flow Rate of the Wells

Flow rates of oil, gas and water are most important parameters of oil production that is detected by Multiphase Flow Meters (MFM). Conventional MFM collects data on long-term, because of the radioactive source is used for detection and in unmanned location used due to being away from wells. In this work, a new method based on feed-forward artificial neural network (ANN) and Imperialist Competit...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue None

pages  225- 231

publication date 2017-10

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023